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SUMMARY 
This is the first of a series of three related papers dealing with some of the consequences of non-uniform meshes 
in a numerical model. In this paper the accuracy of the Crank-Nicolson linear finite element scheme, which is 
applied to the linear shallow water equations, is examined in the context of a single abrupt change in nodal 
spacing. The (in)accuracy is quantified in terms of reflection and transmission coefficients. An incident wave 
impinging on the interface between two regions with different nodal spacings is shown to give rise to no  
reflected waves and two transmitted waves. The analysis is verified using three different wavelengths  A AX, 
4Ax, 8Ax) in three ‘hot-start’ numerical experiments with a mesh expansion factor of 2 and three experiments 
with a mesh contraction factor of 1/2. An energy flux analysis based on the concept of group velocity shows 
that energy is conserved across the interface. 
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1. INTRODUCTION 

A numerical modeller is often required to numerically simulate the hydrodynamics of a limited 
study area which has boundary conditions which are not well known, or a study area which 
requires more detail than the neighbouring region(s). Several approaches which can be used to 
overcome these difficulties include: 

Refinement ofthe computational grid. This is accomplished naturally in finite elements, but 
with finite differences requires more book-keeping in the form of look-up tables for 
evaluating derivatives.’ 

(ii) Transforming the co-ordinates. This method relies on the existence of a suitable transform, 
which is usually site-specific, to  suit the study area.2 

(i) 
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(iii) The use ofnested grids. In this method the large-scale prediction is first made on a coarse 
grid which is completely independent of the nested fine grid computation. Values from the 
coarse grid are then used to drive the fine grid model. Phillips and Shukla3 refer to this as 
‘one-way’ interaction, since only the coarse grid computation can influence the fine grid 
c~mputa t ion .~  The main disadvantage of this method is that errors due to the lack of 
resolution in the coarse grid are fed into the fine grid model along its boundaries. 

(iv) The use o f a  patchwork model.’ In this method calculations on both the coarsely gridded 
areas and the finely gridded areas are carried out simultaneously. The two meshes are 
dynamically coupled and there is a ‘two-way’ interaction since information from the fine 
mesh is now incorporated by the coarse mesh and vice versa. 

This paper is concerned with point (i) above. However, the techniques of analysis used also apply 
to point (iv). 

Refining (or expanding) a computational mesh is not without its consequences. The purpose of 
this paper is to investigate some of these effects for the Crank-Nicolson linear finite element 
scheme based upon the shallow water equations using the consistent mass matrix approach. (Note 
that the time discretization is effected by the trapezoidal rule, which is somewhat loosely referred 
to herein, and in other references, as ‘Crank-Nicolson’.) Using a Fourier analysis, it is shown how 
these effects can be quantified (i.e. reflection and transmission coefficients) and lead to an 
improved understanding of the processes involved when an incident wave or Fourier component 
encounters a single change in nodal spacing (or mesh size). 

The analysis and experiments have been simplified in several respects. The governing equations 
are the 1 D linear shallow water equations. Also, the spatial domain contains only a single change 
in nodal spacing and the node where this occurs divides the domain into two uniform regions 
(i.e. 1 and 2) with two different element lengths (Ax ,  and Ax2).  Physically there is no difference 
between the two regions since they are both characterized by the same depth (i.e. hl  = h2 = h) and 
the same fluid (p l  = p 2  = p). The only differences are computational since it is only by the two 
different element lengths that the two regions can be discerned. The ratio of the element lengths in 
the two regions will be referred to as the mesh size ratio, i.e. H’ = A x 2 / A x l  . 

The consequences of mesh refinement have been largely unexplored until the 1980s. In a series 
of illuminating papers, Bazant and Celep6 investigated the non-physical wave reflections and 
inaccurate wave transmissions due to a change in nodal spacing. Their studies were based upon 
the explicit finite element wave equation scheme using linear and quadratic finite elements for ID 
elastic wave propagation in a Lagrangian co-ordinate system. 

They quantified the magnitude of the reflected and transmitted waves due to a change in nodal 
spacing as well as the reflected and transmitted energy fluxes. They concluded that the consistent 
mass matrix formulation was more accurate than that of lumped mass and that quadratic finite 
elements performed better than linear finite elements. Interestingly, Bazant6 found that in the case 
of a mesh expansion ( A x l  < Ax2),  the transmitted wave has a larger amplitude than the incident 
wavc but a smaller mean energy flux. He proved, however, that energy was conserved in the limit 
of At -+ 0 and alluded to the possibility that for larger time steps (especially for an implicit scheme) 
this might not be the case. I t  has since been proved by Vichnevetsky9 that in the general case 
energy is conserved, and in the present paper it  is demonstrated for the Crank-Nicolson FE 
scheme. 

Celep and Bazant’ also examined the effects of changing the nodal spacing gradually from Ax, 
to Ax2 through a transition zone. They found that when the element lengths in the transition zone 
were varied as an arithmetic progression, the results were only marginally better than for a 
geometric variation. More importantly, they found that for the linear FE wave equation scheme, 
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the effectiveness in mitigating the undesirable reflected waves was insignificant when 
0.5 > Ax,/Ax, > 1.5. 

Trefethen” has examined the results of several interesting systems where the discontinuity 
between the two regions is the result of using (i) a different FD scheme in each region, (ii) an abrupt 
change in coefficient or (iii) a mesh refinement. His examples were based upon the transport 
equation and the second-order wave equation. 

Vichnevetsky’ ’ has carried out an extensive review of a family of numerical schemes (including 
the Crank-Nicolson linear finite element scheme) with ‘computational molecules’ involving six 
points in the x-t plane. One of the main conclusions was that, provided the appropriate energy 
norm is used, the analyses of many reflection phenomena are independent of the temporal 
discretization used. This implies, therefore, that such phenomena are adequately investigated by 
only considering the semi-discrete case. 

Worthingtont2 has investigated the effect of a single change in mesh size for the 
Crank-Nicolson and leapfrog finite difference schemes applied to the shallow water equations 
with the variables for velocity and surface elevation staggered in space. The purpose was to 
quantify the reflected and transmitted wave amplitudes which would be present in a patch- 
work model. Consequently, he was interested in the results for two particular mesh size ratios 
(viz. 3 and 1/3). 

One feature which all four of the above-mentioned numerical schemes have in common is that 
their dispersion relations all increase monotonically. This is in contrast to the Crank-Nicolson 
linear finite element scheme which is ‘hill-shaped’ or concave down, and the consequences of this 
fact make its investigation somewhat unusual. 

Before the discrete system is investigated, it is of value to investigate a parallel problem in the 
continuum. For both the discrete and continuum systems, the governing equations 
equations for the conservation of momentum and mass, referred to collectively as the 
water equations: 

av au 
at ax - + h -= 0. 

are the 
shallow 

(1) 

(2) 

2. REFLECTION AND TRANSMISSION IN THE CONTINUUM 

Unlike the discrete system to be considered next, reflections in the continuum must have a physical 
basis. They can be caused by a sudden change in geometry. The case to be examined here is of a 1D 
frictionless prismatic channel with an abrupt change in depth from h,  to h,. The subscript ‘1’ is 
used throughout to refer to the reach upstream of the interface or step, and ‘2’ to the downstream 
reach. (This is depicted in the inset of Figure 1). When an incident wave impinges on the step in the 
channel, it gives rise to a reflected wave and a transmitted wave. 

Since the system is linear (no convective or friction terms), superposition is valid and the 
incident waveform can be decomposed into a number of Fourier components. In any analysis, 
therefore, it is sufficient to consider just one component. The surface elevation or velocity in the 
upstream section is the result of the incident wave and the reflected wave. This can be expressed in 
exponential form, where it is understood that only the real part is to be taken, i.e. 

v 1  (x, t )  = $ e i ( w t - u ~ ~ )  + f l f l e i ( O f + u i X )  7 

U l h  t )=J(g/h,)(v 

(3) 

), (4) A e i ( a t  - U I  x) - p$ & ( a t  + U I  x) 
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Figure 1. Reflection and transmission coefficients for the shallow water equations due to an abrupt change in depth 
(hi to 4 )  

where 

91 instantaneous surface elevation 
ij 
o angular frequency 
(r wave number 
f l  
x 
t time. 

In the downstream reach the surface elevation and velocity are given by 

amplitude of the surface elevation for the incident wave 

reflection coefficient, which in general is complex 
space co-ordinate measured away from the step in the channel, in the downstream direction 

( 5 )  v2(x, t )  = zeei(or-c2x), 

u,(x, t ) =  J(y /h , )n j  ei(wt-02x), (6) 
where z is the transmission coefficient, which in general is complex. Substitution of equations (3) 
and (4) or (5) and (6)  into the linear shallow water equations (1) and (2) yields the dispersion 
relations for the upstream or downstream section, viz. o = o1 c1 = 0 2 c z ,  where c1 = , / ( g h , )  and 

In order to quantify the reflected and transmitted waves, it is necessary to supply the internal 
boundary conditions which are enforced at the step in the channel, where x = 0. These boundary 
conditions are approximate owing to the sudden change in the nature of the fluid motion near the 
step. Different boundary conditions have been used by various authors. Lamb13 used the first- 
order mass flow balance just upstream and downstream of the step as well as the continuity of 

c2 = J(gh2). 
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pressure (and hence surface elevation): 

at x = 0 for all times. 
u , h ,  = u , h ,  

? 1 =  112 

Substitution of equations (3H6) into (7) and (8), and requiring that the transmitted wave has the 
same phase as the incident wave, yields the reflection and transmission coefficients: 

Alternatively, for shallow water conditions, the same reflection and transmission coefficients in 
equations (9) and (10) are also obtained by assuming an energy flux balance at the step as well as a 
mass flow balance. Svendsen and J o n ~ s o n ' ~  used another approach based on the balance of 
energy and mass to solve the slightly different problem where the upstream and downstream 
reaches are joined by a submerged slope (assumed small in length relative to the wavelength) 
rather than a step. Once again equations (9) and (10) are obtained for shallow water conditions: 

The points to note about B and t in equations (9) and (10) are: 

(i) l + j ? = t .  
(ii) j? and t are both real. 
(iii) - 1 < j? < 1 and 0 < t < 2. 

Some similarities of these three results for the continuum to those in the discrete system (where the 
discontinuity between the upstream and downstream reaches is only due to numerical reasons, i.e. 
A x l  being different to Ax,)  will become evident. 

3. WAVE REFLECTION AND TRANSMISSION IN THE DISCRETE SYSTEM 

The discrete system consists of two regions with finite element lengths A x l  and Ax,.  The location 
of the node at the interface of the two regions is taken to be the origin of the x-axis (see Figures 2(a) 
and 2(b)). Region 1 can be viewed as a domain extending from x = 0 to minus infinity (x -, - co) 
with a periodic boundary condition at x = 0; and similarly for region 2 from x=O to x +  + co. 
Consequently a Fourier analysis is valid and is used in the reflection/transmission analysis. 

3.1. Dispersion relations 

The dispersion relations will be used to relate the wavelengths present in the two regions. 
Since the two regions have different nodal spacings, the operating conditions will also be 

different. Region 1 is characterized by a Courant number $, = cAt/Ax, and region 2 is character- 
ized by $, = cAt/Ax, (where At and Ax are time and space increments). The corresponding 
dispersion relations at these two Courant numbers are represented in Figures 2(a) and 2(b) for the 
situations of a mesh refinement and a mesh expansion respectively. 

The dispersion relation for the Crank-Nicolson linear finite element scheme is given by 

1.5$ siny 
tan ("2"')- __ - 2+cosy '  
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%&% U,&X, ‘lbbXl ‘ 2 b b X 2  

uAx 

Figure 2(a). Schematics of the dispersion relations of the two regions (above left) and the waves present (above right) for 
mesh refinement, Ax2 < Ax, 

WAt 
A REGION 1 

A X ,  U2*AX, %Ax, U d X i  

UAx 

Figure 2(b). Schematics of the dispersion relations of the two regions (above left) and the waves present (above right) for 
mesh expansion, Ax, > Ax, 

where y = aAx is the dimensionless wave number. This relation is concave down with a maximum 
frequency wmax occurring at y = 2x13, irrespective of the Courant number. Platzrnanl5 refers to  
such a wave number as a ‘folding’ wave number. Both infinitely long waves and 2Ax waves possess 
zero angular frequency. For frequencies between zero and urnax, the dispersion relation is cut in 
two locations corresponding to a relatively long wave number (which has positive group velocity) 
and a relatively short wave number (which has negative group velocity). These two wave numbers 
will be termed ‘complementary’ wave numbers and will be specified as y l a  = ala Axl, 
j:,,, = albAxl in region 1 and yza = a2=Ax2, 7 2 b  = azbAx2 in region 2. The wave number y l a  will 
be used to refer to the incident wave number which may have a negative or a positive group 
velocity. Its complementary wave number in region 1 (i.e. y l b )  will have a group velocity with the 
opposite sign. In region 2, y2a will refer to the wave number which is associated with the group 
velocity which has the surne sign as that for y l a ,  and y 2 b  is its complementary wave number. 
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For region 1 the dispersion relation is 

1.5G1 sin y l a  - 1.5(E1 sin Y l b  t a n ( y )  = - 
2 + COSYla 2 + cos Y l b  

and for region 2 

1.5C2sin y2a - 1.5(Z2 sin YZb - 
2 + cos 72, 2 + cos Y2b ' 

tan r$) = 

Since the discrete system being analysed is linear, the wave period and hence the wave frequency is 
the same in both regions. This permits the dispersion relations for the two sides to be linked via the 
wave frequency o = o, = w 2 .  Therefore the two equations above can be combined to give 

1.5p1 sin y l a  - 1.5& sin Y l b  - 
2 + CoS y l a  2 + CoS Y l b  

tan( 7) = 

Equation (12) permits y l a ,  ylb,  y2a and y2,, to be related to each other. In all the analyses which 
follow, the incident wave impinges on the interfacial node at x = 0 from region 1. If the 
incident wavelength L,, = 27c/ala exceeds  AX,, then both phase and energy are directed 
towards the interface. However, if this wavelength is less than  AX,, then the energy flux is away 
from the interface and the wave is incident only in the sense of phase. 

Using equation (12), the relations between wave numbers in the same region will be established, 
i.e. between ya and yb.  After this the relations between wave numbers in different regions will be 
found, i.e. between y1 and y 2 .  

3.2. Calculation of wave numbers in the same region 

In this section the complementary wave numbers will be related, i.e. ya and yb. In region 1 this 
means that the relation between yla  and Ylb will be determined, or for region 2, y2, and Y2b will be 
related. Equating the second and third terms (or the fourth and fifth terms) in equation (12) gives 

sin Yb - sin ya - 
2 + cos Ya 2 + cos yb' 

Simplifying the above leads to 

3 = tan (t) tan( p>. 
Equation (13) permits y l b  to be found from yla ,  y2b from yza and Vice versa. 

3.3. Calculation of the real wave numbers in diflerent regions 

is real. 
In this section y2 will be found in terms of yl. It is understood that the incident wave number y1 

From equation (12) 

1.5c', siny, - 1.5$T2siny2 - 
tan(?) = 2+c0sy1 2+cosy, (14) 
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eauation (14) becomes 
, I  

tan( F) = 1 _+ J(1- 3R:) 
Rl 

This equation shows that for a given incident wave number y,, there are two possible wave 
numbers in the downstream region 2, which are yza and yZb.  

By following the convention for defining the various wave numbers which was detailed in the 
previous section, the following equations are derived from equation (1 5). 

If 27c/(y,,) < 3, i.e. L,, < 3 A x , ,  then 

tan( ';.> = 1 + , / ( 1 - 3 R : )  
R l  

and 

l - J ( l - 3 R : )  
tan (p) = 

Rl 
If 271/(yla) > 3, i.e. L,, > 3Ax1 ,  then 

tan( %) = 1 - J ( 1 - 3 R f )  
Rl  

and 

If 271/(yla) = 3, i.e. L,, =  AX,, then 

Equations (16)-(20) relate the wave numbers in the different regions. These equations contain the 
discriminant J ( 1  - 3 R:), and the possibility of it turning complex for certain values of R ,  needs 
to be investigated. 

From equation (15), yz is real provided 1 - 3 R :  2 0, i.e. 

1 J3sinyl 
H' - 2 + cos y1 
->  

The right-hand side of this inequality has a maximum value of unity a t  y1 = 2x/3.  The inequality 
(21) is always satisfied for H' I 1 irrespective of yl. Thus, in the case of mesh rejinement (H' I l), y 2  
in equations (16H20) is always real. 

In the case of a mesh expansion, the conditions that yz  is red are also determined from the 
inequality (21): 

tan(y,/2) 2 J ~ c H '  + J ( H ' ~  - 111, 

tan(yl/2)< , / 3 ( H ' - J ( H f Z  - l)]. ( 2 W  

(22a) 
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These relations shows that in the case of a mesh expansion, whether y,  is real or complex depends 
on both the mesh size ratio H’ and y1 (see Figure 1 of Part 111 of this series). y ,  is real provided the 
inequalities (22)  are satisfied. For example, when H ‘  = 2, y ,  is real so long as 

y1 > 24335 or y1 d 0 4 6 9 ,  

i.e. 2.217 2 N , ,  > 7.230, where N , ,  = ( L / A x ) ,  and L ,  is the wavelength in region 1. Incident 
wavelengths in region 1 between 2.217Ax1 and 7.230Ax1 will give rise to complex wave numbers 
in region 2. 

If the inequalities (22)  are not satisfied then y2 will be complex, and this corresponds to an 
evanescent wave which is damped (or growing) exponentially in space. This case will be dealt with 
in Part 111 of this series. It is seen, therefore, that in the case of a mesh expansion it is not a simple 
matter of arbitrarily selecting a (real) incident wave number in region 1 and using equations 
(16H20) to determine the complementary wave numbers in region 2. If 1 - 3 R :  < 1, the wave 
numbers in region 2 are complex. A mesh refinement on the other hand does not have these 
difficulties, since for every real wave number y1 there are two real complementary wave numbers in 
region 2. 

The differences between a mesh refinement and mesh expansion with regard to wave numbers 
can be made clearer by referring to the dispersion relations (see Figures 2(a) and 2(b)). It will be 
shown in Part I11 that, provided the frequency of oscillation at a boundary is less than or equal to 
the maximum frequency of the dispersion relation, the wave numbers will be real. If, however, the 
frequency of oscillation at the boundary exceeds the maximum frequency of the dispersion 
relation, the wave numbers will be complex. Figure 2(a) refers to the case of a mesh re$nement; 
because (Z, > P I ,  the dispersion relation for region 2 encloses that for region 1. It is obvious that 
the intersection of the dispersion relation for region 1 in one or two points for a particular 
frequency is a sufficient condition that the region 2 dispersion relation will also be intersected in 
two points. Therefore, provided the wave numbers in region 1 are real, it automatically follows 
that the wave numbers in region 2 will also be real. If wmaX1 and w,,,, refer to the maximum 
frequencies of the dispersion relations for regions 1 and 2, and w refers to the frequency of 
oscillation at  a boundary or interface, it can be seen from Figure 2(a) that there are three possible 
ranges for o in the case of a mesh refinement: 

(i) w < omaxl < omax,-all wave numbers in both regions are real 
(ii) wmaX1 < o < om,,,-incident or region 1 wave numbers are complex, region 2 wave 

numbers are real 
(iii) wmaX1 < om,,, < *all wave numbers in both regions are complex. 

Figure 2(b) depicts the situation for a mesh expansion. The three ranges for w are: 

(i) o < om,,, < omaxl-all wave numbers in both regions are real 
(ii) w,,,, < w < omaX1-incident or region 1 wave numbers are real, region 2 wave numbers 

are complex 
(iii) omaX2 < omaX1 < w-all wave numbers in both regions are complex. 

In summary, it is seen that in the case of mesh rejinement, real incident wave numbers guarantee 
real wave numbers in region 2. For a mesh expansion, however, real incident wave numbers do not 
necessarily give rise to real wave numbers in region 2. 

An interesting point about the kinematic part of the analysis is how relatively long wavelengths 
in region 1 can give rise to significantly shorter wavelengths in region 2 and vice versa. Thus in 
spite of the system being linear, there is a false energy cascade or jump from short wavelengths to 
long wavelengths and vice versa, which has its origins in the change in nodal spacing. For H’ = 1 / 2  
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and 2, Figure 3 shows how the wavelength contracts and/or expands after passing through a 
change in mesh size. It has been shown how an incident wave with dimensionless wave number yla  
gives rise to wave numbers yZa and YZb in region 2. yza refers to the 'physical' wave number and YZb 

to the 'aliased or 'parasitic' wave number, since as the incident wavelength L,,  -+ co then Lz, -+ co 
also, but L,, + 2Axz, i.e. the physical transmitted wavelength tends to the incident wavelength 
but the aliased transmitted wavelengths become very short and unrealistic. It has been shown how 
for a mesh expansion of A x , / A x ,  = 2 there is a range of incident wavelengths (i.e. 
221 7 < L,,/Ax, < 7.230) which give rise to complex wavelengths in region 2. This is shown as the 
dashed line in Figure 3 and will be considered further in Part I11 of this series of papers. If other 
values of H' were plotted, it could be seen how the greater the change in mesh size, the greater the 
distortion of the physical transmitted wavelength with respect to the incident wavelength. 

Now that the kinematic aspect of the reflection/transmission analysis is complete, it is possible 
to carry out a dynamic analysis which permits the calculation of the reflection and transmission 
coefficients. 

3.4. Reflection/transmission analysis due to a change in mesh size 

The first step in the analysis is to assume a solution. As was done for the continuum, it is only 
necessary to consider one Fourier component for the incident wave, since the system is linear and 
any general incident waveform can be built up by superposition. By taking cognisance of the form 
of the dispersion relation (and this is the crux of the analysis), allowance must be made for two (and 
not one) reflected waves and two (rather than one) transmitted waves. This is because an 
oscillation at a boundary (such as the interfacial node) can give rise to two waves with 
complementary wavelengths. Figure 4 details the waves present in the system. 

The reflection coefficients of the two reflected waves with wave numbers nla and (Tlb are p1 and 
pz respectively, while the transmission coefficients of the two transmitted waves with wave- 
numbers rrZa and nZb are z1 and zz respectively. 

The interfacial node at x = 0 is atypical of both regions and therefore needs its amplitude (a) to 
be assigned independently. 

In region 1, where x -= 0, the combined instantaneous velocity and surface elevation are given 
by 

7 (23) 

+p2fiei("t+"it.x) ); (24) 

(25) 

); (26) 

(27) 

(28) 

pit; e i (wt+a  x )  - pz u(x,  t )  = f i e i ( ~ t - u i n x )  - 

~ ( x ,  t ) =  ~(h/g)(riei("'-"lax) + p1 f ie i tmf+ai .x)  

ei(mt + utbx)  
la 

in region 2, where x > 0, they are 
u(x ,  t)= t l ~ e i ( m f - m B ~ )  + Z z $ e i ( " ' - " 2 b ~ )  3 

~ ( x ,  t)= J(h /g) (z ,  riei(wt-a2ax) + Zzfie""'-"2bx' 

and at the interfacial node, where x = 0, they are 

u(0, t )  = azi e'"', 

~ ( 0 ,  t )  = J(h/g) a ri e'"'. 

The linear shallow water equations (1) and (2) are satisfied by all three sets of assumed solutions 
above. Equations (23H28) contain five unknowns. These are the reflection coefficients (pl and p2), 
the transmission coefficients (zl and zz) and a. All unknowns are in general complex, which means 
that phase lags or leads with respect to the incident wave are automatically included. 
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Doshed line d e n o t e s  the reol port 

of the  complex tronsrnttted 

wovelength L 2  I L1 

793 

WAVELENGTHI NODAL SPACING IN REGION 1. I L I A Y  ti  

Figure 3. Transmitted/incident wavelength ( L 2 / L 1 )  due to a single mesh size change (Ax, to Ax2) for the Crank-Nicolson 
linear finite element scheme applied to the shallow water equations 



794 

Reflected Waves 
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Transmitted Waves 

LREGlON 1 I IAEGlON 2 1 

Incident Wave Oscillation at Dividing Node 

A i (a I -qaxJ  A iwt u = u e  u=orue 

Figure 4. Waves present in the system for the Crank-Nicolson linear finite element scheme applied to the shallow water 
equations 

Application of the Crank-Nicolson linear finite element method centred about node j to the 
momentum equation(s) gives 

where 

A x j  
i spatial index 
n temporal index. 

distance between nodes j and j +  1 
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In the reflection/transmission problem,j takes on the values - 2, - 1, 0, 1,2, which correspond to 
the nodal locations at x = -2Axl, -Axl ,  0, Ax2, 2Ax2. 

The continuity equation analogous to equation (29) is easily found by interchanging the u’s and 
the q’s, and by replacing the g’s by h‘s. 

3.4.1. Momentum and mass equations cenired about x = - Axl. Since there are five unknowns, 
five equations are needed. The first two equations come from applying the finite element operator 
centred about the node j = - 1 to the mass and momentum equations. The momentum equation 
will be considered first. When j = -- 1, equation (29) becomes 

2Ax, 

The expressions for the assumed solution (equations (23) 428)) appropriate D either region 1 (for 
j < O), region 2 (forj > 0) or the interface = 0) can be substituted into equation (30) to give, after 
simplifying, 

pz e - 2iYlh)  = 0, (31) + (% - e 2 1 ~ 1 a  - /I1 e-2iylm - 
where 

(Tl = j(gh)At/Ax, 9 /I = e iuAr  9 ’ / l a  = c l a A X 1 ,  y l b  = ~ I , A X , .  

Similarly, application of the continuity equation about x = -Axl results in the following 
equation, which differs from (31) only in that the signs of the terms involving reflections are 
reversed: 

3.4.2. Momentum and mass equations centred ahout x = 0. The momentum equation to be 
considered next is found by setting j = 0 in equation (29) to give 

6 

Substitution of the appropriate assumed solutions (equations (23H28)) into equation (33) leads to 
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where qZ = cAt/Ax,. Similarly, the continuity equation centred about x = 0 yields 

3.4.3. Momentum or continuity equation centred about x = Axz. The fifth and final equation is 
obtained by centring the momentum equation about the node at x = Ax2. (The continuity 
equation is redundant since it yields exactly the same equation and will therefore be omitted.) 
When j = 1, equation (29) becomes 

(36) 
Substitution of equations (25H28) into the above equation leads to 

3.5. Solution of the equations 

The five equations in the five unknowns (a, pl, p 2 ,  zl, zz) are (31), (32), (34), (35) and (37). By 
manipulation and substitution of the equation 

-=i (  A- 1 

which is a form of the dispersion relation, the following solutions are obtained: 

1.5G1 sin y l a  ), 
A + l  2 + COSYla 

a = l + O i ,  p 1 = p z = 0 + O i ,  

z1 = 0.5 1 + [ 
(38) 

(39) 

This solution is quite unexpected, because it means that there are no reflected waves! 

3.6. Discussion of the solutions to the equations 

The transmission coefficients z1 and zZ given by equations (39) and (40) are plotted in 
Figures 5-7 for mesh expansion ratios H' = 1.01 and 2 , l . l  and 3,3/2 and 5, while Figures 8 and 9 
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Figure 5. Transmitted waves due to a single change in mesh size ( A x ,  to Ax,):  Crank-Nicolson finite elements applied to 
the shallow water equations: A x , / A x ,  3 1 (mesh expansion): A x , / A x ,  = 1, 1.01,2 

apply for the mesh contraction ratios to 099, 2/3, 1/3 and 0-9, 05, 0.2. The following points are 
noteworthy: 

1. The effect of the mesh size ratio H' is not contained explicitly in the expressions for z1 and z,, 
but rather implicitly in the relationship between y l a  and yza. 

2. The absolute values of the Courant numbers in regions 1 and 2 do not affect the transmission 
coefficients z1 and 7,. (The relative value, i.e. $ Z l / $ Z 2  = H', enters implicitly as noted above.) 

3. z1 + z2 = 1 + Oi-see equations (39) and (40). 
4. There is a discontinuity in z1 and z, as yza approaches 2n/3 (i.e. as L,, -+  AX,). 
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Figure 6. Transmitted waves due to a single change in mesh size (Axl to Ax2): Crank-Nicolson finite elements applied to 
the shallow water equations: Ax,/Ax, 2 1 (mesh expansion): Ax,/Ax, = 1, 1.1, 3 

5. As the incident wave becomes very long (ie. L,, 3 a), the change in mesh size becomes 
insignificant with respect to the wavelength, and z1 + 1 + Oi and ‘t2 + 0 + Oi. Thus T ~ ,  which 
is associated with y2a, can be regarded as the transmitted wave which is physically 
meaningful and z2 ,  which is associated with the ‘complementary’ wave number y2b, as a 
‘spurious’ or non-physical transmitted wave. 

6. As soon as the mesh deviates from being uniform (say H’= 1.01 or 099), Figures 5 and 8 
show that the effects on T~ and zz are large for a narrow band of wavelengths. At lower or 
higher mesh size ratios, the effects an z1 and z2 are more pronounced for a broader band of 
wavelengths. 
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Figure 7. Transmitted waves due to a single change in mesh size (Axl to Ax2): Crank-Nicolson finite elements applied to 
the shallow water equations: Ax2/Axl > 1 (mesh expansion): Ax,/Ax, = 1 ,  1.5, 5 

7. For mesh refinement, 1~~ I and Iz2 I < 1 (see Figures 8 and 9), whereas for mesh expansion, Izl I 
and 1z21 2 1 (see Figures 5-7). (The dashed sections in Figures 5-7 relate to the occurrence of 
complex wave numbers and evanescent waves in the downstream region. This case is 
considered in detail in Part I11 of this series of papers.) 

3.7. Numerical experiments 

In order to check the analyses, a series of six numerical tests was carried out with two different 
mesh size ratios using three different wavelengths. The mesh size ratios used were H' = 2 for mesh 
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Figure 8. Transmitted waves due to a single change in mesh size (Axl to Ax2): Crank-Nicolson finite elements applied to 
the shallow water equations: Ax,/Ax, < 1 (mesh refinement): Axz/Ax, = 1,0.99, 2/3, 1/3 

expansion and H' = l j 2  for mesh contraction. The wavelengths adopted were 2.001Ax2, 4Ax, and 
8Ax, for the 'physical' transmitted wavelength with the mesh expansion and 2.001 Axl, 4Ax, and 
8Ax, for the incident wavelength in the case of a mesh contraction. (These tests will be generically 
referred to as the 2Ax, 4Ax and 8Ax experiments.) This selection of wavelengths for mesh 
expansion and mesh refinement had the twofold advantage of permitting easy visual interpret- 
ation as well as avoiding the emergence of complex wave numbers and hence wave damping 
in space. 
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Figure 9. Transmitted waves due to a single change in mesh size (Ax, to Ax2) Crank-Nicolson finite elements applied to 
the shallow water equations: Ax2/Axl < 1 (mesh refinement): AxJAx, = 1, 0.9, 0.5, 0.2 

The ‘hot-start’ initial conditions for the tests were defined by setting t = 0 in equations (23H28). 
Since there are two characteristics in the system, two boundary conditions were required, one at 
each end. The surface elevation was specified at the upstream and downstream boundaries using 
equations (24) and (26) respectively. The frequency at which these boundaries were oscillated was 
determined from the dispersion relation for the Crank-Nicolson linear finite element scheme. The 
results of early tests showed that some disturbances were generated from the ends which tended to 
obscure the results. The source of the noise is unknown. Although its magnitude was an order 
smaller than the amplitude of the incident wave, all disturbances emanating from the domain ends 
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for the reflection/transmission tests were windowed out by simply displaying only the central 
portion of the domain. The numerical tests were stopped before the disturbances penetrated the 
middle portion of the domain. For example, in a 2Ax test, 241 nodes were used in the domain but 
only nodes 81-161 are displayed in the results of the numerical experiments, with the interface 
located at the middle node (i.e. 121). Similarly, the 4Ax and 8Ax tests contained 481 and 961 nodes 
respectively, with those displayed being nodes 161-321 and 321-641. 

A similar format was used to display the results of all the reflection/transmission tests. Output 
for surface elevation is displayed for the initial conditions as well as at two subsequent times. 
Regions 1 and 2 are separated by a vertical dashed line which passes through the interfacial node 
for all three sets of results, The water surface at each node location has been marked with a small 
circle. Since the finite elements are linear, the small circles have been joined by straight lines to 
represent the water surface. The mean depth used in all tests was l/g(m), which results in a 
continuum celerity of 1 m s- l. The nodal spacing adopted was either 0.5, 1 or 2 m depending on 
the mesh size ratio and the region being considered. Similarly, the Courant numbers were 01,0*2 
or 0.4. Although real for this series of tests in Part I, the reflection and transmission coefficients are 
generally complex and are recorded in E-format in each figure. The real and imaginary parts are 
enclosed in brackets. As shown by the analysis, the two reflection coefficients are identically zero 
for this series of numerical experiments. 

Finally, a method was needed in order to highlight any deviations of experimental results 
produced by the model away from the analytical predictions of equations (24), (26), (28), (38) to 
(40). The method used was to plot a small triangle to represent the difference between the surface 
elevation of the model and that of the analysis at each nodal location. Any deviation from the zero 
or mean water level indicated a discrepancy. In the context of a 'hot-start' experiment ('cold-start' 
experiments are included in Part 11), any non-zero residual indicated a failure of the analysis. The 
transmission coefficients calculated from equations (39) and (40) were only used for setting up the 
initial conditions and in calculating the residuals at subsequent times. 

After time zero, the solution of the continuity and momentum equations by the numerical 
model controlled the progress of the incident wave and the two transmitted waves. 

In order to demonstrate the results of an incorrect solution in a numerical experiment, one such 
experiment is displayed in Figure 10. Clearly there is a disturbance which originates from the 
interface as shown by the non-zero 'residuals' indicated by the small triangles. This result was 
obtained by swapping the transmission coefficients in equation (26) when defining the initial 
conditions. That is, the surface elevation in region 2 was (incorrectly) given by 

q(x, t )  = J(h/g) [ r ,  liei(mt-g2bX) + T2$ei("f-w*x) 1 

q(x, t ) =  J ( h / g ) [ z ,  Ijei("t-uzax) + T2Qei 'Wt-"2bX) 

instead of the correct solution 

1 (26) 
which is shown later in Figure 16. 

3.8. Data used in the numerical experiments 

The data used in the six numerical experiments are listed in Table I. The figure numbers in the 
table refer to the appropriate numerical experiment. In each test the incident wave (i.e. surface 
elevation) has unit amplitude. 

3.9. Results and conclusions of the numerical experiments 

The results for the three tests on mesh expansion are displayed in Figures 11-13, while those for 
the mesh refinement are given in Figures 14-16. In each test it is seen that the analysis has 
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Figure 10. Mesh refinement test showing a disturbance emanating from the interface which is due to the incorrect 
amplitudes of the two transmitted waves----waves present: incident wave (~~OOOOAX,) and two transmitted waves 

(2.O878Ax2 and 16.O343Ax2) 

Table I. Data for numerical experiments on wave reflection and transmis- 
sion; H' is the mesh size ratio and N ,  is the dimensionless wavelength 

~ 

H' = 2 H' = 0.5 

L2,/Ax2 = 2.0010 L,,/Axl = 29010 
Ll,/Axl = 2.0005 L2,/Ax2 = 2~0005 

t l  = 1~0000 z1 = l~oooo 

P1=82=0 PI =82=0  

N ,  = 2 L2,/Ax2 = 1334 L2,/Ax2 = 2668 

z2 = - 1.4 x z2 = 1.4 x 

(Figure 11)  (Figure 14) 

L2,/Ax2 = 4WOO 
Ll,/Axl = 8.3617 

t l  = 1.4014 
~2 = -0'4014 

Ll,/Axl = 4.oooO 
L2,/Ax2 = 8.3617 

N ,  = 4 L2,/Ax2 = 2.5152 L2,/AX2 = 2.1816 
z1 = 0.7774 
z2 = 0.2226 

81 = P 2 = 0  P1=82=0 
(Figure 12) (Figure 15) 

L2,/Ax2 = 8.oooO 
Lla/Axl = 16.0343 

z1 = 1.0461 
52  = -09461 z2 = 0.0422 
81 = P 2  = o  P 1 = P z = O  

L1,/Axl = 8 4 0 0  
L2,/Ax2 = 16.0343 

N ,  = 8 L2,/Ax2 = 2.1914 LZb/Ax2 = 2.0878 
z1 = 0.9578 

(Figure 13) (Figure 16) 
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Figure 1 1 .  Mesh expansion-waves present: incident wave (2~0005Ax,) and two transmitted waves (20010Ax, and 
1334Ax,) 

successfully predicted the model results since the residuals, as identified by the small triangles, are 
everywhere zero. This confirms the general conclusions of there being no reflected waves 
whatsoever and two transmitted waves present in the downstream region. 

3.9.1. Mesh expansion experiments. In Figure 11 for mesh expansion, the 2Ax, wave in 
region 1 is largely unaffected by the change in nodal spacing from one region to the next. The 
physical transmission coefficient is practically unity, while 72, which is associated with the very 
long wavelength of 1334Ax2, is almost zero. An interesting point about this test is that while the 
incident and transmitted waves are effectively stationary, the energy flux is from region 2 to 
region 1 or from the transmitted wave to the incident wave. 

Figure 12 shows how an 8.36Ax, wave impinging on the interface of a mesh expansion gives rise 
to a 4.0AX2 transmitted wave with a transmission coefficient ( T ~ )  of 1.401 and a 2315Ax2 
complementary wave with a transmission coefficient ( T ~ )  of -0.401. The surface elevation in 
region 2 appears somewhat chaotic but is the result of the superposition of the two transmitted 
waves. With the generally larger waves appearing in region 2 than for the incident wave in 
region 1 ,  it appears that energy is being created. This is not the case, however, since the 
complementary transmitted wave is in fact carrying energy towards the interfacial node rather 
than away from it. 

When the incident wavelength is increased to a 16-O3Ax1 wave (see Figure 13), it is evident that 
the change in mesh size is becoming invisible or insignificant as far as the incident wave is 
concerned. The reason for this is that the amplitude of the complementary transmitted wave ( r 2 )  is 
only 5% of that of the incident wave. The incident wave therefore passes from region 1 to region 2 
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Figure 12. Mesh expansion-waves present: incident wave (%3617Ax,) and two transmitted waves (~OOOOAX, and 
2.5 152Ax,) 
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Figure 13. Mesh expansion-waves present: incident wave (16.0343Ax,) and two transmitted waves (8~oooOAx, and 
2.1914Ax2) 
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relatively unaffected-its wavelength and amplitude change from 16.03Ax1 and 1.00 in region 1 to 
8.0OAx2 = 16.00Ax1 and 1.05 in region 2. 

For mesh expansions, the extrema in the water surface elevation in region 2 were generally 
greater or equal to those of the incident wave. For mesh contractions, however, the opposite is true 
due to the magnitude of both transmission coefficients being smaller than unity. 

3.9.2. Mesh contruction experiments. Figure 14 for a mesh contraction is very similar to 
Figure 1 1 for a mesh expansion. Once again the 2Ax, wave is practically unaffected by the change 
in nodal spacing between the two regions. 

When a 4Ax, wave (see Figure 15) impinges on a mesh contraction, an 8.36Ax2 transmitted 
wave with a transmission coefficient (zl) of 0.777 emerges along with its complement, i.e. a 
2 . 1 8 2 6 ~ ~  transmitted wave with a transmission coefficient (z2)  of 0.223. The generalry ragged 
appearance of the water surface in region 2 is due to the presence of the shorter complementary 
wave, which transports energy back towards the interface. 

Figure 16 indicates how the halving of the nodal spacing presented little obstacle to an incident 
SAX, wave, with the amplitude of the aliased transmitted ( T ~ )  wave being 4% of that of the incident 
wave. 

3.10. Energy flux across the interface 

Bazant6 investigated the energy flux across the interface of two regions for the wave equation 
finite element scheme. The governing equation was the second-order wave equation representing 
the propagation of waves in a ID elastic medium such as a string. The energy flux or power 
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Figure 14. Mesh refinement-waves present: incident wave (2.0010Ax,) and two transmitted waves (2~0005A.x, and 
2668Ax,) 
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Figure 15. Mesh refinement-waves present: incident wave (4~oooOAx1) and two transmitted waves (8.3617Ax2 and 
2.1816Ax2) 
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Figure 16. Mesh refinement-waves present: incident wave (8~oooOAx1) and two transmitted waves (16.0343Ax2 and 
2.0878Ax2) 
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associated with a wave was derived as the product of the nodal force from the let (i.e. the sum of the 
elastic and inertial forces on a node) and the velocity of the node. The expression derived was only 
valid for At +. 0 since the rate of work cannot be defined exactly for a finite time step. The 
dependent variables were the nodal displacements, and since the velocity in the energy flux 
calculation was calculated as the time derivative of the nodal displacement, it could not be defined 
exactly for finite At. When the energy fluxes associated with the incident, reflected and transmitted 
waves were included, it was shown that there was an energy flux balance across the interfacial 
node. 

In a similar manner, the conservation of energy was examined for the Crank-Nicolson linear 
finite element scheme, but this investigation was based on the concept of group velocity. The 
energy flux was calculated as the product of group velocity (which can be defined for finite At) and 
energy intensity. 

In region 1 and at the interface where x d 0, we have from equations (23) and (24), with 
PI = P2 = 0 + Oi substituted, 

U(x, t)=fiei("t-"~ex) 9 (41) 

~ ( x ,  t )  = J(h/g) ii ei(wr-"l-x), (421 

u(x, t )  = T1dei(w'-~zax) + 52aei (wr-a2bx)  9 (43) 

1, (44) 

and in region 2 and at the interface where x > 0, 

q(x, t)= J ( h / g ) ( z l  iiei(ot-a2aX) - z2 a e i ( w t + U Z b x )  

where 

yla  = alaAxl 

yZa = aZaAx2 

y2b = azbAxz 

dimensionless wave number of the incident wave 

dimensionless wave number of the 'physical' transmitted wave 

dimensionless wave number of the 'non-physical' transmitted wave. 

Energy is conserved if the energy flux due to the incident wave is equal to that due to the sum of the 
two transmitted waves. The energy flux is the product of the group velocity and the energy 
intensity. A general expression will now be obtained for the energy flux associated with a wave. 

The kinetic energy density (KE) averaged over the length of an element (Ax) is 

but in the finite element theory, 

u = N j ~ j  + N j + l  u j + l ,  (46) 
where N j  = 1 -x/Ax and N j + l  = x/Ax. Substituting equation (46) into (45) gives 

KE = -(u; P + ujuj+ + u;+ 6 (47) 

where Re ( ) denotes the taking of the real part. Substitution of equation (48) into (47) leads to 

KE = ~ [ sin2 (ot - ojAx) + sin (ot - ajAx) + sin(ot - aj Ax) sin(ot - ojAx - y ) ] ,  (49) 
pi22 

6 
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where y = aAx. The kinetic energy density can then be averaged over a wave period to give 

KEdt  = -(2 Pa2 + COSY) 

12 

after substituting equation (49). 

dissipative system, the total energy density is 
Since there is equipartition of kinetic and potential energy over the wave period in a linear non- 

~ pa2 
Etot= 2 K E  = -(2+cosy). 6 

The numerical group velocity ratio is found from the dispersion relation (equation (11)) and is 
given by 

(51) 
3c(l + 2cosy) 

(cosy + 2)2 + (1.5(Z~iny)~ 
3 4  1 + 2 cosy) 

- = cos2 ( u A t )  
am 
a0 (2+cosy)2 . C g n u m  = - - 

Therefore the time- and space-averaged energy flux for a wave with amplitude 1.2 is given by 

- &( 1 +2cosy )cos2(wAt). 
2 2+cosy E i l u x  = G o t  C g n u m  - 

Using ti = J ( g / h ) e  and equation (52), the energy fluxes associated with the unit incident wave and 
two transmitted waves of equations (42) and (44) are 

- pcg ( 1 +2cosy,, )cos2(mAt), 
Eflux,incident - ~ 2h 2+cosy,, 

Eflux, transmitted = __ P Z ? C ~  (1 + ~ c o s Y ~ ~ )  cos2 (uAt), 
1 2h 2+cosy2, 

Energy is conserved if the expression equating the incident wave energy flux to the sum of the two 
transmitted wave energy fluxes is satisfied. This implies 

When the expression above is simplified using the dispersion relation (1 1) and equations (39) and 
(40), equation (53) is valid and energy is conserved. 

4. CONCLUSIONS 

The analysis has shown that two transmitted waves arise when an incident wave impinges on a 
change in mesh size for the Crank-Nicolson linear finite element scheme. The magnitude and 
phasing of the transmitted waves with respect to the incident wave have been quantified and the 
results verified by 'hot-start' experiments. 
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